A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Van der Waals Epitaxy of III-Nitrides and Its Applications

2020-10-09

Author(s): Chen, Q (Chen, Qi); Yin, Y (Yin, Yue); Ren, F (Ren, Fang); Liang, M (Liang, Meng); Yi, XY (Yi, Xiaoyan); Liu, ZQ (Liu, Zhiqiang)

Source: MATERIALS Volume: 13 Issue: 17 Article Number: 3835 DOI: 10.3390/ma13173835 Published: SEP 2020

Abstract: III-nitride semiconductors have wide bandgap and high carrier mobility, making them suitable candidates for light-emitting diodes (LEDs), laser diodes (LDs), high electron mobility transistors (HEMTs) and other optoelectronics. Compared with conventional epitaxy technique, van der Waals epitaxy (vdWE) has been proven to be a useful route to relax the requirements of lattice mismatch and thermal mismatch between the nitride epilayers and the substrates. By using vdWE, the stress in the epilayer can be sufficiently relaxed, and the epilayer can be easily exfoliated and transferred, which provides opportunities for novel device design and fabrication. In this paper, we review and discuss the important progress on the researches of nitrides vdWE. The potential applications of nitride vdWE are also prospected.

Accession Number: WOS:000569693800001

PubMed ID: 32878046

eISSN: 1996-1944

Full Text: https://www.mdpi.com/1996-1944/13/17/3835



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明