A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Exploring performance of THz metamaterial biosensor based on flexible thin-film

2020-09-17

Author(s): Wang, ZY (Wang, Zhaoyang); Geng, ZX (Geng, Zhaoxin); Fang, WH (Fang, Weihao)

Source: OPTICS EXPRESS Volume: 28 Issue: 18 Pages: 26370-26384 DOI: 10.1364/OE.402222 Published: AUG 31 2020

Abstract: To extend the application of flexible metamaterial in the biosensor field, a metamaterial biosensor, which consisted of metal elliptical split-ring resonator array with a subwavelength structure based on flexible thin-film (parylene-c), was presented. The structure parameters (ring width, period ratio of structure, gap width, axial ratio) of the elliptical split-ring resonator and polarization direction of incident light were investigated as to how to affect the performances of the flexible metamaterial biosensor. Meanwhile, the permittivity (a) of the tested sample on the surface of metamaterials biosensor also affected the shift of transmission spectra. The results showed that the sensitivity, quality (Q) factor, and figure of merit (FOM) of the flexible metamaterial biosensor could reach 243 GHz/RIU, 14.2, and 3.3, respectively. Moreover, the full-width-half-maximum (FWHM) was only 82 GHz. Therefore, these results provided an improved direction to design metamaterial biosensors with high Q-factor, low FOM, and high sensitivity, which could meet the need for sample detection in the terahertz regime. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Accession Number: WOS:000565713200058

PubMed ID: 32906910

ISSN: 1094-4087

Full Text: https://www.osapublishing.org/oe/abstract.cfm?uri=oe-28-18-26370



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明