A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

3D Dielectric Layer Enabled Highly Sensitive Capacitive Pressure Sensors for Wearable Electronics

2020-08-10

Author(s): Zhao, SF (Zhao, Shufang); Ran, WH (Ran, Wenhao); Wang, DP (Wang, Depeng); Yin, RY (Yin, Ruiyang); Yan, YX (Yan, Yongxu); Jiang, K (Jiang, Kai); Lou, Z (Lou, Zheng); Shen, GZ (Shen, Guozhen)

Source: ACS APPLIED MATERIALS & INTERFACES Volume: 12 Issue: 28 Pages: 32023-32030 DOI: 10.1021/acsami.0c09893 Published: JUL 15 2020

Abstract: Flexible capacitance sensors play a key role in wearable devices, soft robots, and the Internet of things (IoT). To realize these feasible applications, subtle pressure detection under various conditions is required, and it is often limited by low sensitivity. Herein, we demonstrate a capacitive touch sensor with excellent sensing capabilities enabled by a three-dimensional (3D) network dielectric layer, combining a natural viscoelastic property material of thermoplastic polyurethane (TPU) nanofibers wrapped with electrically conductive materials of Ag nanowires (AgNWs). Taking advantage of the large deformation and the increase of effective permittivity under the action of compression force, the device has the characteristics of high sensitivity, fast response time, and low detection limit. The enhanced sensing mechanism of the 3D structures and the conductive filler have been discussed in detail. These superior functions enable us to monitor a variety of subtle pressure changes (pulse, airflow, and Morse code). By detecting the pressure of fingers, a smart piano glove integrated with 10 circuits of finger joints is made, which realizes the real-time performance provides the possibility for the application of intelligent wearable electronic products such as virtual reality and interface in the future.

Accession Number: WOS:000551488400098

PubMed ID: 32564591

ISSN: 1944-8244

eISSN: 1944-8252

Full Text: http://doi.org/10.1021/acsami.0c09893



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明