A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Near vacuum-ultraviolet aperiodic oscillation emission of AlN films

2020-05-29

 

Author(s): Zhu, YM (Zhu, Yanming); Lin, RC (Lin, Richeng); Zheng, W (Zheng, Wei); Ran, JX (Ran, Junxue); Huang, F (Huang, Feng)

Source: SCIENCE BULLETIN Volume: 65 Issue: 10 Pages: 827-831 DOI: 10.1016/j.scib.2020.02.018 Published: MAY 30 2020

Abstract: An accurate measurement of the refractive index is necessary for the optical design of both deep ultraviolet laser diodes and light-emitting diodes. Generally, the refractive indices along different crystallographic axes of anisotropic thin films are measured using variable angle spectroscopic ellipsometry. However, there are still some limitations concerning this method. Here we proposed a potential method to measure the band edge refractive index of wide bandgap semiconductor. An aperiodic oscillation emission phenomenon due to the Fabry-Perot effect was observed in the fluorescence spectrum of an AlN film with a thickness of 1500 nm. Based on the characteristics of the fluorescence spectrum and the definition of Fabry-Perot effect, we obtained the ordinary refractive index of the AlN thin film near the band edge directly. This refractive index measurement method is a supplement to the variable angle ellipsometry, and it is a more direct and effective method for transferred film and thinner samples to measure the fluorescence spectrum. (C) 2020 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.

Accession Number: WOS:000531830800011

ISSN: 2095-9273

eISSN: 2095-9281

Full Text: https://www.sciencedirect.com/science/article/pii/S2095927320300815?via%3Dihub



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明