A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Directional Anisotropy of the Vibrational Modes in 2D-Layered Perovskites

2020-05-21

 

Author(s): Dhanabalan, B (Dhanabalan, Balaji); Leng, YC (Leng, Yu-Chen); Biffi, G (Biffi, Giulia); Lin, ML (Lin, Miao-Ling); Tan, PH (Tan, Ping-Heng); Infante, I (Infante, Ivan); Manna, L (Manna, Liberato); Arciniegas, MP (Arciniegas, Milena P.); Krahne, R (Krahne, Roman)

Source: ACS NANO Volume: 14 Issue: 4 Pages: 4689-4697 DOI: 10.1021/acsnano.0c00435 Published: APR 28 2020

Abstract: The vibrational modes in organic/inorganic layered perovskites are of fundamental importance for their optoelectronic properties. The hierarchical architecture of the Ruddlesden-Popper phase of these materials allows for distinct directionality of the vibrational modes with respect to the main axes of the pseudocubic lattice in the octahedral plane. Here, we study the directionality of the fundamental phonon modes in single exfoliated Ruddlesden-Popper perovskite flakes with polarized Raman spectroscopy at ultralow frequencies. A wealth of Raman bands is distinguished in the range from 15 to 150 cm(-1) (2-15 meV), whose features depend on the organic cation species, on temperature, and on the direction of the linear polarization of the incident light. By controlling the angle of the linear polarization of the excitation laser with respect to the in-plane axes of the octahedral layer, we gain detailed information on the symmetry of the vibrational modes. The choice of two different organic moieties, phenethylammonium (PEA) and butylammonium (BA), allows us to discern the influence of the linker molecules, evidencing strong anisotropy of the vibrations for the (PEA)(2)PbBr4 samples. Temperature-dependent Raman measurements reveal that the broad phonon bands observed at room temperature consist of a series of sharp modes and that such mode splitting strongly differs for the different organic moieties and vibrational bands. Softer molecules such as BA result in lower vibrational frequencies and splitting into fewer modes, while more rigid molecules such as PEA lead to higher frequency oscillations and larger number of Raman peaks at low temperature. Interestingly, in distinct bands the number of peaks in the Raman bands is doubled for the rigid PEA compared to the soft BA linkers. Our work shows that the coupling to specific vibrational modes can be controlled by the incident light polarization and choice of the organic moiety, which could be exploited for tailoring exciton-phonon interaction, and for optical switching of the optoelectronic properties of such 2D layered materials.

Accession Number: WOS:000529895500088

PubMed ID: 32275388

Author Identifiers:

Author        Web of Science ResearcherID        ORCID Number

Infante, Ivan                  0000-0003-3467-9376

TAN, Ping-Heng         D-1137-2009         0000-0001-6575-1516

Biffi, Giulia                  0000-0003-0660-6321

Krahne, Roman                  0000-0003-0066-7019

ISSN: 1936-0851

eISSN: 1936-086X

Full Text: https://pubs.acs.org/doi/10.1021/acsnano.0c00435



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明