A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

On the polarization self-screening effect in multiple quantum wells for nitride-based near ultraviolet light-emitting diodes

2020-01-09

 

Author(s): Tian, KK (Tian, Kangkai); Chu, CS (Chu, Chunshuang); Che, JM (Che, Jiamang); Shao, H (Shao, Hua); Kou, JQ (Kou, Jianquan); Zhang, YH (Zhang, Yonghui); Zhang, ZH (Zhang, Zi-Hui); Wei, TB (Wei, Tongbo)

Source: CHINESE OPTICS LETTERS Volume: 17 Issue: 12 Article Number: 122301 DOI: 10.3788/COL201917.122301 Published: DEC 10 2019

Abstract: The tilted energy band in the multiple quantum wells (MQWs) arising from the polarization effect causes the quantum confined Stark effect (QCSE) for [0001] oriented III-nitride-based near ultraviolet light-emitting diodes (NUV LEDs). Here, we prove that the polarization effect in the MQWs for NUV LEDs can be self-screened once the polarization-induced bulk charges are employed by using the alloy-gradient InxGa1-xN quantum barriers. The numerical calculations demonstrate that the electric field in the quantum wells becomes weak and thereby flattens the energy band in the quantum wells, which accordingly increases the spatial overlap for the electron-hole wave functions. The polarization self-screening effect is further proven by observing the blueshift for the peak emission wavelength in the calculated and the measured emission spectra. Our results also indicate that for NUV LEDs with a small conduction band offset between the quantum well and the quantum barrier, the electron injection efficiency for the proposed structure becomes low. Therefore, we suggest doping the proposed quantum barrier structures with Mg dopants.

Accession Number: WOS:000504051000014

ISSN: 1671-7694

Full Text: http://www.clp.ac.cn/EN/Article/OJccf423ed01ae917



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明