A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Remote heteroepitaxy of atomic layered hafnium disulfide on sapphire through hexagonal boron nitride

2019-06-13

Authors: Wang, DG; Lu, Y; Meng, JH; Zhang, XW; Yin, ZG; Gao, ML; Wang, Y; Cheng, LK; You, JB; Zhang, JC
NANOSCALE
Volume: 11 Issue: 19 Pages: 9310-9318 Published: MAY 21 2019 Language: English Document type: Article
DOI: 10.1039/c9nr01700c
Abstract:
Two-dimensional (2D) heterostructures have attracted a great deal of attention due to their novel phenomena arising from the complementary properties of their constituent materials, and provide an ideal platform for exploring new fundamental research and realizing technological innovation. Here, for the first time, we report the formation of high quality HfS2/h-BN heterostructures by the remote heteroepitaxy technique, in which the large-area single-crystal HfS2 layers were epitaxially grown on c-plane sapphire through a polycrystalline h-BN layer via chemical vapor deposition. It is found that c-sapphire substrates can penetrate monolayer and bilayer h-BN to remotely handle the epitaxial growth of HfS2. Benefitting from the high crystal quality of HfS2 epilayers and the weak interface scattering of HfS2 on h-BN, the HfS2 photodetectors demonstrate excellent performance with a high on/off ratio exceeding 10(5), an excellent photoresponsivity up to 0.135 A W-1 and a high detectivity of over 10(12) Jones. Furthermore, the HfS2/h-BN heterostructures prepared by the remote epitaxy can be rapidly released and transferred to a substrate of interest, which opens a new pathway for large-area advanced wearable electronics applications.
全文链接:https://pubs.rsc.org/en/content/articlelanding/2019/nr/c9nr01700c  



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明