A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Highly Conductive Graphene Paper with Vertically Aligned Reduced Graphene Oxide Sheets Fabricated by Improved Electrospray Deposition Technique

2019-04-11

Authors: Yan, JX; Leng, YC; Guo, YN; Wang, GQ; Gong, H; Guo, PZ; Tan, PH; Long, YZ; Liu, XL; Han, WP
ACS APPLIED MATERIALS & INTERFACES
Volume: 11 Issue: 11 Pages: 10810-10817 Published: MAR 20 2019 Language: English Document type: Article
DOI: 10.1021/acsami.8b19811
Abstract:
Because of its notable electrical and mechanical properties, the highly conductive graphene paper has great potential applications in future flexible electronics. In this study, we report a simple and effective method to prepare vertically aligned graphene oxide papers from graphene oxide suspensions by an improved electrospray deposition technique with a moving stage, which is controlled by computer. Then, the flexible reduced graphene oxide papers are successfully synthesized after reduction by using hydroiodic acid. The obtained reduced graphene oxide paper has an electrical conductivity as high as 6180 S/m, which is more than one and a half times of the reduced graphene oxide paper film, which was fabricated by using the electrospray deposition technique without the moving stage. The experimental results approved for the first time that the degree of alignment of reduced graphene oxide sheets can affect the conductivity of the reduced graphene oxide papers. Further electrochemical measurements for a symmetrical supercapacitor device based on the prepared reduced graphene oxide paper indicate that it has great capacitive performance and electrochemical stability. It exhibited relatively high specific capacitance (174 F.g(-1)) at a current density of 1 A.g(-1) in 6 M KOH aqueous solution, and its capacitance can retain approximately 86% after 1000 cycles. In addition, patterned freestanding reduced graphene oxide papers, which have potential applications in many fields such as stretchable electronics and wearable devices, also can be fabricated by using this method.
全文链接:https://pubs.acs.org/doi/abs/10.1021%2Facsami.8b19811



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明