A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Plant-Based Modular Building Blocks for "Green" Electronic Skins

2019-03-29

Author(s): Wang, LL (Wang, Lili); Wang, K (Wang, Kang); Lou, Z (Lou, Zheng); Jiang, K (Jiang, Kai); Shen, GZ (Shen, Guozhen)
Source: ADVANCED FUNCTIONAL MATERIALS Volume: 28 Issue: 51 Article Number: 1804510 DOI: 10.1002/adfm.201804510 Published: DEC 19 2018
Abstract: Electronic skins (e-skins) are a hot research topic with applications in many areas of modern science. Considering the economic viability and sustainability of devices for practical applications, green devices are currently in high demand because they are safe, sustainable, and efficient wearable systems. With natural hierarchical and fiber-shape structures and biological activities, plants are earth-abundant sustainable materials and are excellent "green" candidates to prepare electrodes for e-skins. This review covers recent progress in the use of natural plants for e-skins and highlights their advantages and main functions, for example, biodegradation, mechanical matching, and physical interactions. It is also discussed how the versatility of these materials can further advance next-generation, sustainable, flexible e-skins and the integration of such devices into living environments, which would enable practical application of these systems. Finally, challenges for employing plant materials in green e-skins are addressed.
全文链接:https://onlinelibrary.wiley.com/doi/10.1002/adfm.201804510



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明