A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Composition and Interface Engineering for Efficient and Thermally Stable Pb-Sn Mixed Low-Bandgap Perovskite Solar Cells

2019-03-29

Author(s): Chi, D (Chi, Dan); Huang, SH (Huang, Shihua); Zhang, MY (Zhang, Meiying); Mu, SQ (Mu, Shaiqiang); Zhao, Y (Zhao, Yang); Chen, Y (Chen, Yong); You, JB (You, Jingbi)
Source: ADVANCED FUNCTIONAL MATERIALS Volume: 28 Issue: 51 Article Number: 1804603 DOI: 10.1002/adfm.201804603 Published: DEC 19 2018
Abstract: Low bandgap lead-tin (Pb-Sn) mixed perovskite solar cells have achieved high power conversion efficiency in excess of 17%. However, methylammonium (MA) cation is usually contained, and the thermal stability of MA is always a great concern. In this work, according to composition engineering, a nearly formamidinium (FA) based low-bandgap Pb-Sn mixed perovskite FAPb(0.75)Sn(0.25)I(3) is being tried to explore as the absorber layer. Combined with interface engineering by replacing poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT:PSS), layer with NiOx as hole transport layer, a power conversion efficiency of 17.25% is obtained. This low-bandgap perovskite solar cell maintains about 91% of its original efficiency at 80 degrees C for 20 h, and 92% of its initial performance after 46 days storage at the room temperature. The good thermal stability of nearly FA based low-bandgap perovskite could be good for delivering efficient and stable perovskite-perovskite tandem solar cells.
全文链接:https://onlinelibrary.wiley.com/doi/10.1002/adfm.201804603  



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明