A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Alternated Q-switched and gain-switched dual-pulse Yb fiber laser with Tm-Ho co-doped fiber as saturable absorber

2019-03-18

 

Author(s): Yang, S (Yang, Song); Yang, YY (Yang, Ying-Ying); Zhang, L (Zhang, Ling); Huang, JY (Huang, Jun-Yuan); Bai, YR (Bai, Yun-Rui); Wang, Y (Wang, Yu); Lin, XC (Lin, Xue-Chun)
Source: OPTICS AND LASER TECHNOLOGY Volume: 113 Pages: 159-163 DOI: 10.1016/j.optlastec.2018.12.009 Published: MAY 2019
Abstract: We demonstrate a dual-wavelength and dual-pulse Yb-doped fiber laser with a Tm-Ho co-doped fiber as saturable absorber (SA). The wavelength of the first pulse in the dual-pulsing output is at 1064 nm generated via SA-induced self Q-switching and the second pulse is at 2127.7 nm and generated by gain-switching with the laser at 1064 nm as the pump for the Tm ions in the Tm-Ho co-doped fiber and thus induced stimulated emission. With the increases of the pump power, the pulse duration of the two pulses is decreased depending on the level of the pump. The pulse duration of the laser at 1064 nm decreases from 1.4 mu s to 296 ns when the pump power increases from 275 mW to 475 mW, while the pulse duration at 2127.7 nm is reduced from 440 ns to 246 ns when the pump increases from 300 mW to 475 mW. Accordingly, the repetition rate is decreased from 17.4 kHz to 6.8 kHz. The experimental result shows that Tm-Ho co-doped fiber is an excellent candidate for SA-induced Q-switching at 1064 nm.
全文链接:https://www.sciencedirect.com/science/article/pii/S0030399218315500

 

 



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明