用于细胞代谢检测的640 × 640 ISFET阵列
用于甲基苯丙胺检测的超灵敏晶体管生物传感器
用于生物化学检测的微悬臂梁传感器
新型核酸检测生物传感器及其在鲑鳟鱼类病毒性疫病检测中的应用前景
半导体生物传感器在病毒性人畜共患病检测中的应用与展望
用于病毒检测的生物功能化半导体量子点
基于汗液生物传感器的健康监测可穿戴纺织品
III族氮化物宽禁带半导体的高效p型掺杂新途径研究
钙钛矿量子点固体薄膜原位可控合成新策略
硅基94GHz多通道相控阵芯片组
官方微信
友情链接

III族氮化物宽禁带半导体的高效p型掺杂新途径研究

2023-02-17

 

III族氮化物(又称GaN基 )宽禁带半导体是第三代半导体的典型代表,具有一系列优异性质,是继Si和GaAs之后最重要的半导体材料,对国家的产业升级、节能减排具有战略意义,同时它也是全球高技术竞争的关键领域之一,我国政府高度重视,在若干国家科技和产业发展计划中被列为重点发展方向。AlGaN基深紫外发光器件是继半导体照明后GaN光电子领域主要的研究方向之一,对新冠病毒和其它菌毒有显著的灭杀效果,同时是替代汞灯等气态紫外光源的唯一方案,是国家的重大需求。

当前AlGaN基深紫外发光器件面临的主要挑战是电光转换效率十分低下,其中一个主要瓶颈是高Al组分(>50%)AlGaN材料的高效p型掺杂,也是当前氮化物半导体研究最为关键的科学问题之一,严重制约AlGaN基深紫外光电器件性能提升。AlGaN中Mg杂质离化能很大、难以热激活是实现p型掺杂的核心难点。短周期超晶格技术路线能有效降低AlGaN中Mg杂质的离化能,并通过微带有效提升载流子输运性能;但是,短周期超晶格中微带的形成要求可控制备亚纳米厚度势垒层,这对III族氮化物半导体的主流制备方法MOCVD外延是一个巨大挑战。

北京大学许福军、沈波团队创新发展了一种“脱附控制超薄层外延”方法, 在III族氮化物宽禁带半导体的高效p型掺杂方面取得显著进展。研究团队提出利用MOCVD材料生长过程中的原子表面脱附行为,实现了厚度为3个原子层(约为0.75 nm)的高Al组分AlGaN的稳定制备(图1a),并以此为垒层制备了自组装p型AlGaN短周期超晶格(等效Al组分超过50%),成功将激活能大幅降低至17.5 meV,室温空穴浓度达到8.1×1018 cm-3(图1b)。更为重要的是,通过电流-电压测试中负微分电导效应,证明p型AlGaN 短周期超晶格中微带的形成(图1c),为空穴的纵向输运提供了通道,这也是国际上首次从实验上确认p-AlGaN超晶格微带物理途径的有效性。将该p型AlGaN超晶格结构应用到发光波长280 nm的深紫外LED器件中,器件的载流子注入效率及光提取效率均得到显著提升,100 mA电流下出光功率达到17.7 mW,显示了巨大的器件应用潜力和价值。

图1.(a)基于“脱附控制超薄层外延”方法制备的自组装p型AlGaN 短周期超晶格。(b)p型AlGaN 短周期超晶格的变温霍尔效应测试结果。(c)p型AlGaN 短周期超晶格中负微分电导效应。

相关研究成果以“Sub-nanometer ultrathin epitaxy of AlGaN and its application in efficient doping”为题发表于《光:科学与应用》(Light: Science & Applications 11, 71(2022))。本研究工作主要由王嘉铭博士和王明星博士共同完成,许福军副教授和沈波教授是论文共同通讯作者。该项工作得到了国家重点研发计划、国家自然科学基金等项目的资助。

来源:半导体学报



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明