高粗糙表面的碳纳米纤维膜用于高性能锂硫电池中间层
随着当今社会科技的高速发展,对电能存储技术的要求越来越严苛,向高效率和低成本的方向迈进。目前,锂离子电池做为可再生能源领域中最为成熟的储能体系,在技术研究和实际应用领域都取得了巨大的成功。然而在地壳中锂资源含量较少和分布不均,在未来会导致锂离子电池的成本越来越高。锂硫电池是一种具有巨大应用前景锂离子电池替代技术,可满足更高的能量密度需求,因为它的正极材料硫有着价格低廉且环境友好的优势,可提供1675 mA·h·g-1 的高理论容量和2567 Wh·kg-1 的高理论能量密度。然而,为了使锂硫电池成为商业技术,仍然需要解决许多具有挑战性的问题,例如,在电池充放电过程中电池容量衰减快,电池稳定性差以及库仑效率较低等问题。这些问题大多是由于在电池充放电循环过程中,正极硫产生的多硫化物中间体Li2Sn (4≤n≤8)在有机电解质中的溶解度较高使得活性材料快速消耗,硫较差的绝缘性以及循环过程中的硫的巨大体积膨胀造成的。
德国伊尔梅瑙工业大学雷勇教授团队(应用纳米物理研究团队)多年来致力于能源存储材料和器件的研究,近年来集中于探索新型离子电池电极材料的研究,对锂硫电池,钠离子电池和钾离子电池等新型离子电池有着系统的研究。最近,雷勇教授课题组与苏州大学功能纳米与软物质研究院(FUNSOM)孙旭辉教授课题组合作通过静电纺丝技术制备了一种高粗糙表面氮掺杂碳纳米纤维膜,作为改善锂硫电池电化学性能的有效中间层。此纤维膜具有着较大的比表面积和高的表面粗糙度,能够有效的稳定在锂硫电池充放电过程中形成的可溶性多硫化物,减少多硫化物的流失,并且氮掺杂可以有效的提升此碳纳米纤维的导电性,从而提升锂硫电池的电化学性能。
图1. (b) 锂硫电池的组装示意图;(b) 氮掺杂高粗糙表面碳纳米纤维的扫描电镜图。
作为一种低成本,高导电性和物理吸附能力的中间层,此氮掺杂碳纳米纤维膜中间层可以有效稳定高溶解度的多硫化物,提升锂硫电池的电化学性能。对比通过复杂而昂贵的正极材料的改性和结构设计等方式来提升锂硫电池性能的方法,这种廉价,合成工艺简单的高性能氮掺杂碳纳米纤维膜中间层为改善锂硫电池性能提供了另一种有效的思路。
Highly-rough surface carbon nanofibers film as an effective interlayer for lithium–sulfur batteries
Hongfan Zhu, Mo Sha, Huaping Zhao, Yuting Nie, Xuhui Sun, Yong Lei
J. Semicond. 2020, 41(9): 092701
doi: 10.1088/1674-4926/41/9/092701
Full Text: http://www.jos.ac.cn/article/doi/10.1088/1674-4926/41/9/092701?pageType=en