水热沉积助力硒硫化锑太阳能电池效率突破
硒硫化锑,其化学式为Sb2(S,Se)3,是近年来太阳能电池研究领域的一种新兴光捕获材料,其带隙在1.1-1.7 eV范围内可调,满足最佳的太阳光谱匹配。同时,Sb2(S,Se)3具有较高的吸收系数,五百纳米左右厚度的薄膜即能达到最佳吸收;因此,Sb2(S,Se)3太阳能电池在超轻、便携式发电器件方面也具有潜在的应用。鉴于Sb2(S,Se)3具有良好的稳定性和丰富元素储量,光电转换效率的进一步提升有望推进应用。由于缺少合适的材料制备方法,其最高光电转换效率限制在7%左右。
中国科学技术大学陈涛教授、朱长飞教授团队,与新南威尔士大学的Xiaojing Hao副教授等开展合作,发展了水热沉积法制备硒硫化锑(Sb2(S,Se)3)半导体薄膜材料并将其应用到太阳能电池中,实现了光电转换效率10%的突破。该方法制备了致密、平整且横向元素分布均匀的光吸收薄膜,从而有利于载流子的传输以及界面接触。通过调节前驱物的比例,可以方便的改变所制备薄膜中Se/S的原子比,从而可以优化光响应。
缺陷调控是制备高效太阳能电池的关键因素。结合理论计算,通过深缺陷瞬态谱仪分析,本研究发现所合成的Sb2(S,Se)3主要深缺陷为SbS替位缺陷,通过增加Se/S原子比例可以减少SbS替位缺陷,而不增加SbSe缺陷,这主要是由于SbSe缺陷的形成能较高。这种调控从整体上减少了薄膜中深能级缺陷种类和浓度。瞬态光谱研究表明,缺陷的减少有利增加载流子的寿命,从而提高器件的光电转换效率。
图1. (a) 硒硫化锑的晶体结构示意图,(b) 水热沉积制备硒硫化锑薄膜示意图,(c)器件的认证结果,光电转换效率为10%。
图2. (a)晶体取向示意图,增加硒/硫比促进[221]生长,有助于载流子传输,(b)界面Sb2(S,Se)3/CdS界面无扩散,(c-d)随着Se/S比的增加,缺陷逐渐减少。
该成果以“Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency”为题发表在Nature Energy。论文的共同第一作者是中国科学技术大学化学与材料科学学院的博士后唐荣风、博士生王小敏和连伟涛。中国科学技术大学朱长飞教授、新南威尔士大学的Xiaojing Hao教授,中国科学技术大学陈涛教授为该论文的共同通讯作者。合作者还包括中国科学技术大学杨上峰教授、澳门大学邢贵川教授以及华东师范大学陈时友教授等。研究得到了科技部、国家自然科学基金委等项目的支持。
论文链接: https://www.nature.com/articles/s41560-020-0652-3