用于细胞代谢检测的640 × 640 ISFET阵列
用于甲基苯丙胺检测的超灵敏晶体管生物传感器
用于生物化学检测的微悬臂梁传感器
新型核酸检测生物传感器及其在鲑鳟鱼类病毒性疫病检测中的应用前景
半导体生物传感器在病毒性人畜共患病检测中的应用与展望
用于病毒检测的生物功能化半导体量子点
基于汗液生物传感器的健康监测可穿戴纺织品
III族氮化物宽禁带半导体的高效p型掺杂新途径研究
钙钛矿量子点固体薄膜原位可控合成新策略
硅基94GHz多通道相控阵芯片组
官方微信
友情链接

中国科大实现纳米级空间分辨电磁场量子传感

2019-12-05

我校郭光灿院士团队在实用化量子传感的研究中取得重要进展,该团队的孙方稳小组实验实现50纳米空间分辨力高精度多功能量子传感。该系列研究成果发表在应用物理权威期刊《Physical Review Applied》上。

微纳光电子技术已经成为当前信息领域的核心技术之一,同时也在能源、环境、生物医学等领域发挥重要作用。一般情况下,微纳光电子器件具有尺寸小、电磁场强度低且易受干扰等特点。因此,微纳电磁场探测技术需要同时解决高空间分辨力、高测量灵敏度及对待测量非破坏性等难题和挑战。我实验室孙方稳小组聚焦于上述微纳电磁场测量的挑战和难点,提出利用量子传感和量子探针等新思想和新方法,发展了具有纳米级空间分辨力的远场光学超分辨成像新技术。结合高保真度量子态调控技术,实现了同时具有高空间分辨力、高测量灵敏度及对待测量非破坏的微纳电磁场测量技术。

孙方稳小组首先基于金刚石氮-空位色心中电荷态的调控,提出并实现了具有纳米级空间分辨力超低泵浦功率的电荷态耗尽纳米成像术(Charge State Depletion nanoscopy,CSD),实现了4.1纳米空间分辨力的电子自旋量子态的成像与检测。实验获得的成像分辨力是光学衍射极限的1/86,超过了受激辐射损耗荧光显微成像术(STimulated Emission Depletion microscopy, STED,2014年度诺贝尔化学奖)所获得的1/67的精度,所用的泵浦功率仅仅是STED成像术的1/1000,将有望能应用在活体生物检测中。该工作发表在Phys. Rev. Appl. 7, 014008 (2017) 上,并选为当期编辑推荐论文。此外,提出时间门控技术,实现成像信号对比度的提高,完成了高对比度的量子成像。工作发表在Phys. Rev. Appl. 11, 064024 (2019) 上。进一步,将CSD纳米成像术与荧光寿命成像、光学偏振态检测、电子自旋态高保真度量子操控技术相结合,实现了对金属纳米线结构所携带的光场态密度、偏振、电流及其产生的磁场等多个物理量的进行了非破坏性测量,空间分辨力达50纳米。因为空间分辨力的提高,使得该微纳光电磁场的探测精准度超过了96%。该工作发表在Phys. Rev. Appl. 12, 044039 (2019) 上。

 

该系列工作为高空间分辨力非破坏电磁场检测和实用化的量子传感打下了基础,将应用在微纳电磁场及光电子芯片的检测,以及微纳尺度电磁场与物质相互作用的研究。此外,相对于生物分子的高空间分辨力成像,该工作还拓宽了远场超分辨成像技术的应用场景。

该系列论文的第一作者是中科院量子信息重点实验室陈向东副研究员。上述研究得到科技部、国家基金委、中国科学院和安徽省的支持。

附文章链接:

https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.12.044039

https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.11.064024

https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.7.014008

(中科院量子信息重点实验室、中科院量子信息和量子科技创新研究院、科研部)

 

(来源:中国科学技术大学新闻网

 

 



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明