用于细胞代谢检测的640 × 640 ISFET阵列
用于甲基苯丙胺检测的超灵敏晶体管生物传感器
用于生物化学检测的微悬臂梁传感器
新型核酸检测生物传感器及其在鲑鳟鱼类病毒性疫病检测中的应用前景
半导体生物传感器在病毒性人畜共患病检测中的应用与展望
用于病毒检测的生物功能化半导体量子点
基于汗液生物传感器的健康监测可穿戴纺织品
III族氮化物宽禁带半导体的高效p型掺杂新途径研究
钙钛矿量子点固体薄膜原位可控合成新策略
硅基94GHz多通道相控阵芯片组
官方微信
友情链接

光电所在基于人工智能的运动目标跟踪研究方面取得进展

2019-11-21

目标跟踪是计算机视觉领域一个重要的研究热点,应用范围广,包括无人机监察、无人驾驶、行人与车辆监控等。目标跟踪从上世纪50年代初起源至今,尽管已有大量研究成果,但对于复杂场景的实时目标跟踪依旧难以实现。目标跟踪过程中的目标变形、光照变化、尺度变化、快速运动与模糊、遮挡等依然是稳定跟踪目标的艰巨挑战。

目前,主流的目标跟踪算法主要有传统目标跟踪方法和基于深度学习的目标跟踪算法。传统目标跟踪方法在跟踪实时性上表现较好,但是由于特征提取能力受限,导致在不同应用环境下准确性和鲁棒性受限。基于深度学习的目标跟踪算法特征提取能力很强,但其计算复杂实时性难以保证。

光电所光电探测与信号处理研究室徐智勇、张建林研究员等带领的研究团队针对复杂场景飞机目标实时跟踪的实际应用,对Multi-Domain Networks深入研究,基于其在跟踪准确性上的优异表现,提出了简约跟踪框架Fast Deep learning Tracking Networks(FDLAT Net)如下图,通过深度网络的多层特征增强了目标特征及表示有效克服了目标姿态、复杂场景干扰等问题。

FDLAT Net架构

研究团队进一步通过全连接层与回归层的优化,在有效地提升了目标跟踪的处理速度的同时也很好地提升了目标识别的准确性和目标跟踪的精度,使算法对姿态变化、场景干扰、尺度变化等情形下的目标都实现了稳定跟踪,并达到实时跟踪的要求。

论文链接:http://www.oejournal.org/mv_html/j00001/2019-09/A190912000005_WEB.htm

(来源:中国科学院光电技术研究所



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明