用于细胞代谢检测的640 × 640 ISFET阵列
用于甲基苯丙胺检测的超灵敏晶体管生物传感器
用于生物化学检测的微悬臂梁传感器
新型核酸检测生物传感器及其在鲑鳟鱼类病毒性疫病检测中的应用前景
半导体生物传感器在病毒性人畜共患病检测中的应用与展望
用于病毒检测的生物功能化半导体量子点
基于汗液生物传感器的健康监测可穿戴纺织品
III族氮化物宽禁带半导体的高效p型掺杂新途径研究
钙钛矿量子点固体薄膜原位可控合成新策略
硅基94GHz多通道相控阵芯片组
官方微信
友情链接

中国科学家实现对光的波粒二象性可控量子叠加

2019-09-27

新华社南京9月3日电(记者陈席元)我们都知道光具有波粒二象性,但能否实现对这种量子叠加状态的操控?记者3日从南京大学获悉,该校物理学院马小松教授团队首次演示了单光子波动性和粒子性的非局域可控叠加。相关成果2日发表在《自然-光子学》上。

在人类科学史上,欧几里得、笛卡尔、牛顿等著名科学家都曾研究过光的本质是粒子还是波。19世纪,托马斯·杨在双缝干涉实验中发现了光的干涉现象,显示了光的波动性。到了20世纪,人们在发展量子物理的时候明确,光具有波粒二象性,它既是粒子也是波,处于波与粒子的叠加态。

是否可以找到一种控制手段,让单个光子按照我们的需要,仅表现为粒子,或者仅表现为波?著名物理学家惠勒提出的延迟选择实验,就是外部观测者通过操控光学元件,决定单个光子表现出波动性或粒子性,如果在光子进入实验装置后再“延迟”选择,会发现这个选择“改变”了光子的性质。

“这个实验深刻阐述了经典物理与量子物理不同的时空观,不能用经典物理的概念去理解量子物理的现象。”马小松教授介绍,团队在惠勒延迟选择实验的基础上,实现了一个新的非局域量子延迟选择实验。在该实验中,团队使用另外一对纠缠光子作为控制单元,利用它们之间的纠缠调控实验主体光子的性质。

为了实现严格的非局域量子控制,控制单元须远离实验主体单元,满足“爱因斯坦局域性”条件。“我们此次严格依照‘爱因斯坦局域性’条件实现了量子延迟选择实验, 弥补了惠勒延迟选择实验的漏洞。”论文第一作者、南京大学博士生王凯说,“要实现这个条件,我们要在空间上与时间上都能精确控制实验仪器。实验光学仪器分布在校园内的两个实验室中,光信号与电信号的时序经过了精确设置。”

马小松表示,实验不但证明了光可以同时处于波动性或粒子性的量子叠加,而且还证明了这种“波-粒”量子叠加态是可调控的,为量子光学以及量子信息处理提供了新方法。

[ 责编:战钊 ]

(来源:光明网



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明