A dragonfly-wings like self-powered magnetic field sensor with vibration ...
High-Density Electroencephalogram Facilitates the Detection of Small Stim...
Amino acid salt induced PbI2 crystal orientation optimization for high-ef...
Superhydrophobic films with high average transmittance in infrared and vi...
Effect of stress control by growth adjustment on the edge thread dislocat...
Strain-induced polarization modulation at GaN/Ti interface for flexible t...
Atomic Evolution Mechanism and Suppression of Edge Threading Dislocations...
Study on HAZ extension characteristics during laser ablation of CFRP base...
3-Dimensional folded nanorod chiral structure with broadband circular dic...
Versatile design for temporal shape control of high-power nanosecond puls...
官方微信
友情链接

Modeling, Parameters and Synaptic Plasticity Analysis of Lateral-Ionic-Gated Graphene Synaptic FETs (Open Access)

2024-07-12


He, Xiaoying; Cao, Bowen; Xu, Minghao; Wang, Kun; Rao, Lan

Source: Advanced Electronic Materials, 2024; E-ISSN: 2199160X; DOI: 10.1002/aelm.202400047; Publisher: John Wiley and Sons Inc

Articles not published yet, but available online Article in Press

Author affiliation:

School of Electronic Engineering and Beijing Key Laboratory of Space-Ground Interconnection and Convergence, Beijing University of Posts and Telecommunications, Beijing; 100876, China

Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors Chinese Academy of Sciences, P.O.Box 912, Beijing; 100083, China

Abstract:

Exploiting simulation modeling of graphene synaptic field-effect transistors is extremely important for helping researchers to construct carbon-based neuromorphic computing systems. Here, lateral-ionic-gated graphene synaptic FETs with different gate lengths are fabricated, and they are modeled by using basic physic models combined with the ions migration-diffusion model and graphene material model. The feasibility and accuracy of the proposed modeling are validated by showing an excellent agreement between simulations and experimental results. The slicing technique of the modeling is proposed to analyze the influence of ionic concentration and diffusion coefficient on the ions movement to reveal their working mechanism. The effect of key parameters about gate length, ionic concentration, and diffusion coefficient on synaptic behavior such as short-term plasticity, and long-term plasticity is simulated and discussed. In addition, three kinds of spike-timing-dependent plasticity are obtained by the device modeling. This research opens up promising avenues for the development of artificial synapse modeling and paths to new opportunities for the construction of carbon-based neuromorphic networks.





关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明