Microwave Photonic Harmonic Down-Conversion Based on Four-Wave Mixing in ...
A Method for Batch Modification of Neural Microelectrodes Via Removable E...
Microwave Photonic Harmonic Down-Conversion Based on Four-Wave Mixing in ...
Relative Gradient Matching Cost for Mitigating Feature Discrepancies in S...
 976 nm Fundamental Transverse Mode Ridge Diode Laser with Narrow Far-Fi...
Annealing-induced defects and optical degradation in sputter-deposited si...
Spectral Beam Combining with Beam Shaping of Distributed 2D Multi-Single ...
AlGaN/GaN HEMT Sub-Terahertz Detectors Integrated with Spiral Antennas
Multifunctional buried interface modification for efficient and stable Sn...
The photoinduced hidden metallic phase of monoclinic VO2 driven by local ...
官方微信
友情链接

Freezing and thawing of cells on a microfluidic device: a simple and time-saving experimental procedure

2024-05-14


Lv, Xiaoqing; Ma, Zhengtai; Guo, Lin Source: Bioscience, Biotechnology and Biochemistry, v 87, n 12, p 1478-1484, December 1, 2023;

Abstract:

Developing cell cryopreservation methods on chips is not only crucial for biomedical science but also represents an innovative approach for preserving traditional cell samples. This study presents a simple method for direct cell freezing and thawing on chip, allowing for long-term storage of cells. During the freezing process, cells were injected into the microchannel along with a conventional cell cryopreservation solution, and the chip was packed using a self-sealing bag containing isopropyl alcohol and then stored in a –80°C refrigerator until needed. During the thawing process, microcolumn arrays with a spacing of 8 μm were strategically incorporated into the microfluidic chip design to effectively inhibit cells from the channel. The breast cancer cell lines MDA-MB-231 and B47D demonstrated successful thawing and growth after cryopreservation for 1 month to 1 year. These findings offer a direct cell freezing and thawing method on a microfluidic chip for subsequent experiments.

© The Author(s) 2023. Published by Oxford University Press on behalf of Japan Society for Bioscience, Biotechnology, and Agrochemistry. All rights reserved. (18 refs.)




关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明