Microwave Photonic Harmonic Down-Conversion Based on Four-Wave Mixing in ...
A Method for Batch Modification of Neural Microelectrodes Via Removable E...
Microwave Photonic Harmonic Down-Conversion Based on Four-Wave Mixing in ...
Relative Gradient Matching Cost for Mitigating Feature Discrepancies in S...
 976 nm Fundamental Transverse Mode Ridge Diode Laser with Narrow Far-Fi...
Annealing-induced defects and optical degradation in sputter-deposited si...
Spectral Beam Combining with Beam Shaping of Distributed 2D Multi-Single ...
Microstructure and magnetic properties of the ferromagnetic semiconductor...
Improving temperature characteristics of GaN-based ultraviolet laser diod...
Optimizing auxiliary laser heating for Kerr soliton microcomb generation
官方微信
友情链接

The photoinduced hidden metallic phase of monoclinic VO2 driven by local nucleation via a self-amplification process

2024-05-14


Guo, Feng-Wu; Liu, Wen-Hao; Wang, Zhi; Li, Shu-Shen; Wang, Lin-Wang; Luo, Jun-Wei Source: arXiv, April 11, 2024;

Abstract:

The insulator-to-metal transition (IMT) in vanadium dioxide (VO2) has garnered extensive attention for its potential applications in ultrafast switches, neuronal network architectures, and storage technologies. However, a significant controversy persists regarding the formation of the IMT, specifically concerning whether a complete structural phase transition from monoclinic (M1) to rutile (R) phase is necessary. Here we employ the real-time time-dependent density functional theory (rt-TDDFT) to track the dynamic evolution of atomic and electronic structures in photoexcited VO2, revealing the emergence of a long-lived monoclinic metal phase (MM) under low electronic excitation. The emergence of the metal phase in the monoclinic structure originates from the dissociation of the local V-V dimer, driven by the self-trapped and self-amplified dynamics of photoexcited holes, rather than by a pure electron-electron correction. On the other hand, the M1-to-R phase transition does appear at higher electronic excitation. Our findings validate the existence of MM phase and provide a comprehensive picture of the IMT in photoexcited VO2.

© 2024, CC BY. (66 refs.)




关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明