Engineering 2D Material Exciton Line Shape with Graphene/h-BN Encapsulation
Mapping the Antiparallel Aligned Stripe Domain Rotation by Microwave Exci...
Design and Simulation of Silicon-Based Tunable External Cavity Diode Lase...
 US2Mask: Image-to-mask generation learning via a conditional GAN for ca...
High-Performance All-Dielectric Metasurface for Quadruple Fano Resonance-...
Polarization Characteristics of Vertical Cavity Surface Emitting Laser wi...
Comparative Transcriptome Analysis Reveals the Light Spectra Affect the G...
Gate-compatible circuit quantum electrodynamics in a three-dimensional ca...
Monolithic integration of deep ultraviolet and visible light-emitting dio...
Enhanced linear polarization of GaN-based Micro-LED via rational chip sid...
官方微信
友情链接

A novel bidirectionally operated chirped quantum-dot based semiconductor optical amplifier using a dual ground state spectrum   (Open Access)

2024-05-08


Cao, Victoria; Pan, Shujie; Wu, Dingyi; Zhang, Hongguang; Tang, Mingchu; Seeds, Alwyn; Liu, Huiyun; Xiao, Xi; Chen, Siming Source: APL Photonics, v 9, n 4, April 1, 2024;

Abstract:

Bi-directionally operated amplifiers enabling efficient utilization of transmission wavelengths are promising candidates in densely integrated photonic circuits for future cost-effective, power-efficient optical networks. Here, we demonstrate, for the first time, a broadband semiconductor optical amplifier (SOA) based on a novel chirped multilayered quantum dot (QD) structure, which is suitable for bi-directional amplification via the dual ground state (GS) emission spectrum. The fabricated QD SOA has achieved a maximum 3-dB gain bandwidth of 50 nm while retaining on-chip gain above 20 dB at both GS wavelengths. Under an optimum pumping current of 280 mA, the bi-directionally operated QD SOA has shown around 10 dB receiver sensitivity improvement in ultra-high-speed 100 Gbaud non-return-to-zero and 53.125 Gbaud four-level pulse amplitude modulation data transmission systems.

© 2024 Author(s). (55 refs.)




关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明