半导体所等在莫尔异质结层间激子研究方面取得进展
半导体所举行2023年开学典礼暨研究生入所教育大会
半导体所在高功率、低噪声量子点DFB单模激光器研究方面取得重要进展
半导体所召开主题教育专题民主生活会
半导体所等在手性分子产生自旋极化研究中取得新进展
半导体所召开党委理论学习中心组学习(扩大)会
半导体所组织学习贯彻中国科学院2023年夏季党组扩大会议精神
【中国科学院院刊】抢占“镓体系”半导体科技制高点 助力实现光电子信息产业的...
半导体所观测到各向异性平面能斯特效应
中国科学院副院长阴和俊调研半导体研究所
官方微信
友情链接

半导体所在垂直亚铁磁单层膜中发现新型自旋轨道矩

2022-04-21

自旋轨道矩(Spin-orbit torque)是一种利用自旋轨道耦合产生自旋流并通过角动量转移实现磁性材料电调控的有效方法,通常发生在具有反演对称性破缺的自旋霍尔金属/磁性材料界面等。亚铁磁是具有两套反平行排列、相互竞争磁晶格的一类重要磁性材料。亚铁磁因其高速自旋动力学、角动量和磁性高度可控补偿、易探测等独特优势成为一种有广泛应用前景的信息功能材料。发展低功耗、高速、高密度非易失亚铁磁自旋存储和计算新技术的关键是实现巨大垂直磁各向异性、易集成亚铁磁材料的高效电调控。物理上,亚铁磁为探究反铁磁耦合体系的特有自旋现象提供了灵活、便捷的研究平台。

最近,中科院半导体所半导体超晶格国家重点实验室的朱礼军课题组与美国康奈尔大学Daniel Ralph教授、David Muller教授等合作,在组分均匀、兼容传统CMOS工艺、巨大垂直磁各向异性的亚铁磁FeTb薄膜中发现了一种非传统自旋轨道矩效应,并利用该新型自旋轨道矩在室温下实现了几十纳米厚度FeTb薄膜仅为几个MA/cm2的超低电流密度翻转。研究表明该新型自旋轨道矩为一种体自旋轨道耦合效应,总自旋轨道矩效率随厚度增大而单调增大,并在90纳米厚度时达到了300%;单位厚度自旋轨道矩效应达到了0.036 nm-1,是目前文献报道的最高值;物理起源为内部自旋霍尔效应和某种hidden反演对称性破缺的相互作用,其强度可通过样品组分调控,其符号随角动量和磁矩的平行或反平行排列发生改变。这些新发现与之前在均匀铁磁体系的研究结果 (Adv. Funct. Mater. 2020: 30, 2005201; Adv. Funct. Mater. 2021:31, 2103898) 一起为研究非传统自旋轨道矩效应及其在低功耗、高速、高密度自旋存储和计算技术中的应用提供了重要物理原理信息。

相关工作在线发表在美国物理联合会旗舰期刊Applied Physics Reviews (影响因子19.162),并入选“研究亮点”。朱礼军研究员为通讯作者,博士后刘前标和朱礼军研究员为共同一作。该工作得到了中科院先导专项、中科院半导体所启动经费等的支持。

论文链接:https://aip.scitation.org/doi/full/10.1063/5.0087260

课题组网站:https://www.x-mol.com/groups/ZhuGroup-semiCAS

现招收硕博连读和联培研究生和优秀博士后,欢迎联系我们。

1.扫描透射电镜(STEM)图像及元素能量损失谱,从中可以清楚地看到FeTb是界面平整、组分均匀的非晶薄膜。

 

2. (a) 单层膜中体自旋轨道矩示意图; (b) 体自旋轨道矩效率随厚度增加而增加,且在较大厚度时达到了300%(c) 20 纳米薄膜中自旋轨道矩效率和有效旋磁比 Tb组分的强烈依赖关系。中间组分的反号行为表明该新型自旋轨道矩依赖于体系角动量和磁矩的相对取向。

3. 新型体自旋轨道矩驱动巨大垂直磁各向异性和高矫顽力FeTb薄膜(Hk 35 kOe, Hc = 1. 6 kOe)实现低电流密度翻转(~5 MA/cm2)。

 



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明