Multi-Dimensional Multiplexed Metasurface Holography by Inverse Design
Author(s): Yin, YY (Yin, Yongyao); Jiang, Q (Jiang, Qiang); Wang, HB (Wang, Hongbo); Liu, JH (Liu, Jianghong); Xie, YY (Xie, Yiyang); Wang, QH (Wang, Qiuhua); Wang, YT (Wang, Yongtian); Huang, LL (Huang, Lingling)
Source: ADVANCED MATERIALS DOI: 10.1002/adma.202312303 Early Access Date: FEB 2024
Abstract: Multi-dimensional multiplexed metasurface holography extends holographic information capacity and promises revolutionary advancements for vivid imaging, information storage, and encryption. However, achieving multifunctional metasurface holography by forward design method is still difficult because it relies heavily on Jones matrix engineering, which places high demands on physical knowledge and processing technology. To break these limitations and simplify the design process, here, an end-to-end inverse design framework is proposed. By directly linking the metasurface to the reconstructed images and employing a loss function to guide the update of metasurface, the calculation of hologram can be omitted; thus, greatly simplifying the design process. In addition, the requirements on the completeness of meta-library can also be significantly reduced, allowing multi-channel hologram to be achieved using meta-atoms with only two degrees of freedom, which is very friendly to processing. By exploiting the proposed method, metasurface hologram containing up to 12 channels of multi-wavelength, multi-plane, and multi-polarization is designed and experimentally demonstrated, which exhibits the state-of-the-art information multiplexing capacity of the metasurface composed of simple meta-atoms. This method is conducive to promoting the intelligent design of multifunctional meta-devices, and it is expected to eventually accelerate the application of meta-devices in colorful display, imaging, storage and other fields.
An end-to-end inverse design framework is proposed. By representing the entire process of meta-atom mapping and scattered field diffraction propagation as differentiable, the parameters of metasurface can be directly output after inputting target images. Metasurface hologram containing up to 12 channels is designed and experimentally demonstrated by using simple meta-atoms with two degrees of freedom. image
Accession Number: WOS:001173627400001
PubMed ID: 38372628
Author Identifiers:
Author Web of Science ResearcherID ORCID Number
Jiang, Qiang 0000-0001-7390-6880
ISSN: 0935-9648
eISSN: 1521-4095