[黄昆论坛]第373期:Energy Harvesting by Spin Current
[黄昆论坛]第372期:Enhancement of Light Color Conversion through Nanoscal...
[黄昆论坛]第371期: 光力学中的拓扑和非互易动力学
[黄昆论坛]第370期:Recent Advances of 2D Metal-Complex Nanosheets
[黄昆论坛]第369期:High-speed optoelectronics for underwater optical wire...
[黄昆论坛]第368期:The Development of Low Noise Avalanche Photodiodes
[黄昆论坛]第367期:氧化钛纳米棒的制备以及在染料敏化太阳电池中的应用
[黄昆论坛]第366期:Valleytronics and correlated phase probed by interlaye...
[黄昆论坛]第365期:低维纳米材料的极化激元及其增强红外光谱研究
[黄昆论坛]第364期:微纳光子的高效操控与室温量子态
官方微信
友情链接

第295期:Salient physics of transition metaldichalcogenides

2016-11-03

  报告题目: Salient physics of transition metaldichalcogenides

  报告人: Prof. Shengbai Zhang (Department of Physics, Applied Physics, & Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, USA)

  时间: 2016年11月10日(星期四)上午10:00点

  地点: 中国科学院半导体研究所图书馆101会议室

  Abstract: Materials physics of two-dimensional (2D) semiconductors can be noticeably different from that of traditional three-dimensional semiconductors, both in standard and in 2D-specific properties. Taking transition metal dichalcogenides (TMDs) as an example: while a semiconductor surface tends to reconstruct according to the electron counting model (ECM) [1], the same model does not apply to TMD. More intriguingly, first-principles calculations reveal that the multi-valency of transition metal element can be critically important to the edge reconstruction [2]. The latter is vital for the understanding of strong photoluminescence observed in MoS2 flakes [3]. The MoS2 can also be stacked withWS2 to form an atomically-thin heterostructure from which experiment has observed a ultrafast femtosecond hole transfer upon optical excitation [4].Using the time-dependent DFT approach coupled with molecular dynamics, we propose that the collective motion of excited carriers could be responsible for the ultrafast dynamics [5]. For such a van der Waals interface, charge transfer is also a matter of criticality where the timescale of the transfer varies discontinuously (from very fast to very slow) with respect to the interfacial dipole coupling.

  Reference:

  [1] M. D. Pashley, Phys. Rev. B 40, 10481 (1989).

  [2] M. C. Lucking, J. Bang, H. Terrones, Y.-Y. Sun, and S. Zhang, Chem. Mater.27, 3326 (2015).

  [3] H. R. Gutiérrez, et al., Nano Lett. 13, 3447 (2012).

  [4]X. Hong, et al., Nat. Nanotech. 9, 682 (2014); Y. Yu, et al., Nano Lett. 15, 486 (2015).

  [5] H. Wang, J. Bang, Y. Sun, L. Liang, D. West, V. Meunier, and S. Zhang, Nat. Comm. 7, 11504 (2016).

  Biography:Prof. Zhang’s research involves first-principles and multiscale calculations of structural and electronic properties of materials, which range from inorganic crystalline, amorphous semiconductors, metals, and their nanostructures to organic materials, bio functional groups, and solutions. While his research interests are primarily in the fundamental physics of materials, they have always been inspired by the needs for sustainable energy and environment, technology leadership, and national security. Prof. Zhang has published about 280 peer reviewed papers with high impact to the fields (citations >11,000, Hirsch Index = 56).



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明