[黄昆论坛]第373期:Energy Harvesting by Spin Current
[黄昆论坛]第372期:Enhancement of Light Color Conversion through Nanoscal...
[黄昆论坛]第371期: 光力学中的拓扑和非互易动力学
[黄昆论坛]第370期:Recent Advances of 2D Metal-Complex Nanosheets
[黄昆论坛]第369期:High-speed optoelectronics for underwater optical wire...
[黄昆论坛]第368期:The Development of Low Noise Avalanche Photodiodes
[黄昆论坛]第367期:氧化钛纳米棒的制备以及在染料敏化太阳电池中的应用
[黄昆论坛]第366期:Valleytronics and correlated phase probed by interlaye...
[黄昆论坛]第365期:低维纳米材料的极化激元及其增强红外光谱研究
[黄昆论坛]第364期:微纳光子的高效操控与室温量子态
官方微信
友情链接

第227期:Novel integrated devices based on nonlinear frequency generation

2014-05-13

  题 目: Novel integrated devices based on nonlinear frequency generation

  报告人: Roberto Morandotti (INRS-EMT, Fellow of the Royal Society of Canada, Fellows of OSA and SPIE, and Full Member of SigmaXi)

  时间: 2014年5月15日(星期四),下午15:00

  地点: 中科院半导体研究所学术会议中心

  摘要: While the demand for bandwidth is still increasing, electronics is now approaching many fundamental limitations in speed. Very likely the next generation of processors will implement optical methods to transport the signal to different part of the chip. Hence photonics materials and optical integration strategies will have to meet the current CMOS technology and platform. Ultimately a number of optical functionalities will have to be realized in an all-optical way. In particular, future time-domain multiplexed optical networks will exploit stable pulsed sources exceeding hundreds GHz repetition rates, possibly based on passive mode locked lasers. We recently demonstrated that it is possible to obtain stable, high repetition mode-locked soliton emission, by using a nonlinear high-finesse filter, thus exploiting a novel interaction mechanism that we named Filter-Driven Four Wave Mixing (FD-FWM) and which extends the DFWM operating mechanism through the use of a highly nonlinear integrated micro-ring resonators. Furthermore, this novel technology present exciting prospect towards the generation of entangled and correlated photons, opening new paradigms towards the realization of future Quantum Enabled Telecommunications Networks.

  报告人简历: Roberto Morandotti received a MSc in Physics from the University of Genova in 1993 and a PhD in Electronic Engineering at the University of Glasgow (Scotland) in 1999, where his research activity focused on the study of the linear and nonlinear properties of optical discrete systems. In June 2003 he joined INRS-EMT in Montreal , where he is a Full Professor since 2008.His research interests mainly deal with the linear and nonlinear properties of periodic structures, both in III-V semiconductors and silica, as well as with optics at unusual wavelengths, with a special focus on THz.



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明