第141期:Patternable Low-κ Dielectric Materials for “Greener” Semiconductor
Abstract:In this talk, I will introduce a novel multifunctional material, called a patternable low dielectric constant (low- κ) dielectric material, which dramatically reduces process complexity and enables a simple, low-cost, and “greener” way to wire the miniscule transistors in advanced semiconductor chips. A patternable low-κ dielectric material combines the functions of a traditional photoresist and a dielectric material into one single material. It acts as a traditional photoresist during patterning and is subsequently converted into a low-κ dielectric material during a post-patterning curing process. It eliminates the need for all sacrificial materials and their related deposition, pattern transfer (etch) and removal processes required in the traditional manufacturing flow. We have developed a patternable low-κ material that is compatible with the 248 nm optical lithography and possesses electrical and mechanical properties similar to those of an industry standard plasma enhanced chemical vapor deposition (PE CVD) deposited low-κ material. This κ =2.7 patternable low-κ material is based on a prevalent material platform and compatible with the current manufacturing infrastructure, thus easing a move toward mass adoption. We have also successfully demonstrated integration of this novel patternable low-κ dielectric material into advanced chips with very high electrical yields. This “proof-of-concept” demonstration of this simple, low-cost, “greener” patternable low-κ material technology is an important step toward preserving the historical pace of progress in the semiconductor industry.