康俊杰


1.个人简介

康俊杰,博士研究生,副研究员,2010年在西北工业大学取得学士学位,2015年在中国科学院半导体研究所取得博士学位,2014年1月至2015年1月在麦吉尔大学进行联合培养,2015年7月至2019年6月在中国工程物理研究院应用电子学研究所工作,2016年至2019年,在韩国高丽大学和新加坡科技设计大学从事博士后研究,2019年7月至2023年5月在松山湖材料实验室任副研究员。长期从事第三代半导体氮化物相关研究,主要研究领域有氮化物材料外延生长、器件设计和制备、微纳结构制备、低温光谱分析、异质异构集成等,在Advanced Materials, Advanced Functional Materials等期刊发表论文近50篇,H因子为16,引用近1000次,合作申请专利40余项,近年来,主持省部级科研项目3项,参与6项。专注科研成果产业化应用,实现近千万元芯片销售。


2.主要科研方向

(1)氮化物外延材料生长和光电特性研究

(2)氮化镓基发光器件研究(Micro-LED、紫外LED、蓝绿光激光器、紫外激光器)

(3)氮化物材料范德华外延、异质异构片上集成器件研究

(4)电力电子器件研究(SBD、HEMT、MOSFET)


3.主要学术成就

(1)在电力电子器件方面,实现GaN基肖特基二极管的高性能开发,开启电压低于0.45V,反向击穿达到220V,指标国内领先。

(2)研发出可量产的高电光效率UV-LED,波长涵盖240-325 nm,电光效率(WPE)均超过5%,其指标水平达到国际先进水平,科研成果获得转化,产生经济效益上千万。

(3)采用独特的外延结构设计,研发出波长<250 nm的深紫外UVC-LED,推动了医疗、检测、光谱分析等先进技术的发展。

(4)基于高质量AlN模板和外延结构设计,配合超低接触电阻和高光提取透镜芯片工艺,实现外量子效率(EQE)超过10%的UVB-LED,为国际领先水平。

(5)研究低温电注入AlGaN纳米线发光机制,与合作者首次在国际上报道了室温电注入深紫外262 nm的纳米线随机激光器。

(6)通过改进激光器结构,优化激光器腔面膜技术,研发出GaN基蓝光激光器,连续电流下实现了单管瓦级的输出功率。

(7)基于模式调控和芯片工艺改进,自主研发出大功率GaAs基激光器,推动了大功率780和9xx nm芯片的国产替代步伐。


近5年代表性论文[1-23]:

1. Li, T., et al., Paving the Way for High‐Performance UVB‐LEDs Through Substrate‐Dominated Strain‐Modulation. Advanced Functional Materials, 2023. 33(3): p. 2208171.

2. Huang, Z., et al., Excavating the Communication Performance in GaN‐Based Green Micro‐LEDs: Modular‐Architectured p‐Type Region. Advanced Photonics Research, 2023. 4(4): p. 2200076.

3. Chen, Q., et al., Lattice modulation strategies for 2D material assisted epitaxial growth. Nano Convergence, 2023. 10(1): p. 1-16.

4. Zhang, F., et al., The Structural Evolution of Semipolar (11− 22) Plane AlN Tem-Plate on m-Plane Sapphire Prepared by Sputtering and High Temperature Annealing. Materials, 2022. 15(8): p. 2945.

5. Zhang, F., et al., The in-plane-two-folders symmetric a-plane AlN epitaxy on r-plane sapphire substrate. Symmetry, 2022. 14(3): p. 573.

6. Luo, W., et al., Breaking the transverse magnetic-polarized light extraction bottleneck of ultraviolet-C light-emitting diodes using nanopatterned substrates and an inclined reflector. ACS Photonics, 2022. 9(9): p. 3172-3179.

7. Luo, W., et al., Watts-level ultraviolet-C LED integrated light sources for efficient surface and air sterilization. Journal of Semiconductors, 2022. 43(7): p. 072301.

8. Liu, S., et al., Drive High Power UVC‐LED Wafer into Low‐Cost 4‐Inch Era: Effect of Strain Modulation. Advanced Functional Materials, 2022. 32(19): p. 2112111.

9. Liang, Z., et al., Influence of sputtered AlN buffer on GaN epilayer grown by MOCVD. Journal of Physics D: Applied Physics, 2022. 56(3): p. 035105.

10. Li, D., et al., Deep‐ultraviolet micro‐LEDs exhibiting high output power and high modulation bandwidth simultaneously. Advanced Materials, 2022. 34(19): p. 2109765.

11. Huang, Z., et al., Modulation bandwidth improvement of GaN-based green micro-LEDs array by polarization-induced p-type doping. Applied Physics Letters, 2022. 121(3).

12. Huang, Z., et al., Transmission data rate improvement by InGaN barriers in GaN-based blue micro-LEDs for visible light communication. Optics Letters, 2022. 47(16): p. 4235-4238.

13. Liu, S., et al., Four-inch high quality crack-free AlN layer grown on a high-temperature annealed AlN template by MOCVD. Journal of Semiconductors, 2021. 42(12): p. 122804.

14. Liu, S., et al., Sec‐eliminating the SARS‐CoV‐2 by AlGaN based high power deep ultraviolet light source. Advanced Functional Materials, 2021. 31(7): p. 2008452.

15. Liang, Z., et al., Ultra-thin AlGaN/GaN HFET with a high breakdown voltage on sapphire substrates. Applied Physics Letters, 2021. 119(25).

16. Huang, L., et al., Structure and luminescence of a-plane GaN on r-plane sapphire substrate modified by Si implantation. Chinese Physics B, 2021. 30(5): p. 056104.

17. Yuan, Y., et al., 3D-Ising critical behavior in antiperovskite-type ferromagneticlike Mn. 2020.

18. Yuan, Y., et al., 3D-Ising critical behavior in antiperovskite-type ferromagneticlike Mn3GaN. Journal of Applied Physics, 2020. 127(7).

19. Zhou, K., et al., Suppression of higher-order modes in a large-optical-cavity waveguide structure for high-power high-efficiency 976-nm diode lasers. Superlattices and Microstructures, 2019. 129: p. 40-46.

20. Li, P., et al., Highly efficient InGaN green mini-size flip-chip light-emitting diodes with AlGaN insertion layer. Nanotechnology, 2019. 30(9): p. 095203.

21. Kang, J., et al., Fabrication of an InGaN/GaN nanotube-based photoanode using nano-imprint lithography and a secondary sputtering process for water splitting. Japanese journal of applied physics, 2019. 58(8): p. 081001.

22. Du, W., et al., Optimization of Facet Reflectivity of 450-nm GaN-Based Semiconductor Lasers. Acta Optica Sinica, 2019. 39(6): p. 0614002.

23. Li, P., et al., Carrier dynamics of two distinct localized centers in 530 nm InGaN green light-emitting diodes. Superlattices and Microstructures, 2018. 113: p. 684-689.

4.个人联系方式(邮箱、电话等)

kangjunjie@semi.ac.cn

15228327227




关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明