Camo: Capturing the Modularity by End-to-End Models for Symbolic Regression
Enhanced Band Filling Effect and Broadband Multiwavelength Lasing in Plas...
Artificial Neural Network-based Approach to Modeling Energy Bands of GaN-...
Wavelength-Tunable Microlasers Based on Perovskite Sheets Processed from ...
Optimizing FPGA-based DCN Accelerator with On-Chip Dataflow Reordering an...
Advances of laser range-gated three-dimensional imaging (invited) (Advanc...
DoctorGPT: A Large Language Model with Chinese Medical Question-Answering...
High-quality β-(AlxGa1−x)2O3 thin films on sapphire substrates by face-...
High continuous-wave power surface emitting terahertz lasers integrated w...
Microwave Photonic Harmonic Down-Conversion Based on Four-Wave Mixing in ...
官方微信
友情链接

Buildup and synchronization regimes of a vector pure-quartic soliton molecule in a fiber laser cavity

2024-05-14


Author(s): He, CJ (He, Chaojian); Zhu, ZW (Zhu, Zhiwei); Yang, S (Yang, Song); Wang, N (Wang, Nan); Yang, YY (Yang, Yingying); Lin, XC (Lin, Xuechun)

Source: OPTICS EXPRESSVolume: 32Issue: 7  Pages: 11895-11906  DOI: 10.1364/OE.520916  Published Date: 2024 MAR 25

Abstract: Pure-quar tic solitons (PQSs) have recently received increasing attention due to their energy-width scaling over the traditional soliton, which has expanded our understanding of soliton dynamics with high-order dispersion in nonlinear systems. Here, we numerically reveal the asynchronization and synchronization processes of the sub-pulse within the vector PQS molecule in a mode-locked fiber laser by solving the coupled Ginzburg-Landau equations. During the establishment of a vector PQS molecule, the repulsion, attraction, and finally stabilization processes have been observed. Specifically, sub-pulse disappearance, regeneration, and finally synchronization with the other pulses are also investigated. Our analysis of the pulse energy, time interval, and relative phase evolution dynamics with the round trip indicates that the asynchronization and synchronization within the vector PQS molecule associate tightly with the gain competition and the cross-phase modulation. Our findings provide insights into the internal mutual dynamics within the vector soliton molecule and offer guidance for the applications of PQS.

Accession Number: WOS:001206706900005

PubMed ID: 38571027

ISSN: 1094-4087




关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明