A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Recent Advances of Two-Dimensional Nanomaterials for Electrochemical Capacitors

2020-04-09

 

Author(s): Huang, TT (Huang, Tingting); Jiang, Y (Jiang, Yuan); Shen, GZ (Shen, Guozhen); Chen, D (Chen, Di)

Source: CHEMSUSCHEM Volume: 13 Issue: 6 Special Issue: SI Pages: 1093-1113 DOI: 10.1002/cssc.201903260 Published: MAR 20 2020

Abstract: Two-dimensional (2D) nanomaterials have drawn a wide range of research interests because of their unique ultrathin layered structures and attractive properties. In particular, the electrochemical properties and great variety of 2D nanomaterials make them highly attractive candidates for electrochemical capacitors, such as supercapacitors, lithium-ion capacitors, and sodium-ion capacitors. Herein, a comprehensive review of recent progress towards the application of 2D nanomaterials for electrochemical capacitors is provided. Several typical types of 2D nanomaterials are first briefly introduced, followed by detailed descriptions of their electrochemical capacitor applications. Finally, research perspectives and future research directions of these interesting areas are also provided.

Accession Number: WOS:000521252700003

PubMed ID: 31943844

ISSN: 1864-5631

eISSN: 1864-564X

Full Text: https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cssc.201903260



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明