A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Evaluation of drag force of a thrip wing by using a microcantilever

2020-01-09

 

Author(s): Zhao, P (Zhao, Peng); Dong, ZH (Dong, Zihao); Jiang, YG (Jiang, Yonggang); Liu, H (Liu, Hao); Hu, HY (Hu, Hongying); Zhu, YF (Zhu, Yinfang); Zhang, DY (Zhang, Deyuan)

Source: JOURNAL OF APPLIED PHYSICS Volume: 126 Issue: 22 Article Number: 224701 DOI: 10.1063/1.5126617 Published: DEC 14 2019

Abstract: Tiny flight-capable insects such as thrips utilize a drag-based mechanism to generate a net vertical force to support their weight, owing to the low associated Reynolds number. Evaluating the drag generated by such small wings is of considerable significance to understand the flight of tiny insects. In this study, a self-sensing microcantilever was used to measure the drag force generated by an actual wing of a thrip. The wing of a thrip was attached to the tip of the microcantilever, and the microcantilever along with the wing was affixed perpendicular to a constant airflow at the middle of a bench-top wind tunnel. The drag generated by the wing under airflow velocities in the range of 0-4.8 m/s was obtained. In addition, the drag generated by the wing was verified by performing a three-dimensional computational fluid dynamics analysis. At a biological average wing tip velocity of 0.7 m/s, the difference between the measured drag force (290 nN) and calculated drag force (300 nN) was merely 3.3%. This new approach of evaluating the drag force generated by tiny insects could contribute to enhancing the understanding of microscale flight. Published under license by AIP Publishing.

Accession Number: WOS:000504094100022

ISSN: 0021-8979

eISSN: 1089-7550

Full Text: https://aip.scitation.org/doi/10.1063/1.5126617



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明