A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

High-Efficiency Single-Component Organic Light-Emitting Transistors

2019-10-11

Authors: Qin, ZS; Gao, HK; Liu, JY; Zhou, K; Li, J; Dang, YY; Huang, L; Deng, HX; Zhang, XT; Dong, HL; Hu, WP

ADVANCED MATERIALS

Volume: 31 Issue: 37 Published: SEP 2019 Early Access: AUG 2019 Language: English Document type: Article

DOI: 10.1002/adma.201903175

Abstract:

Construction of high-performance organic light-emitting transistors (OLETs) remains challenging due to the limited desired organic semiconductor materials. Here, two superior high mobility emissive organic semiconductors, 2,6-diphenylanthracene (DPA) and 2,6-di(2-naphthyl) anthracene (dNaAnt), are introduced into the construction of OLETs. By optimizing the device geometry for balanced ambipolar efficient charge transport and using high-quality DPA and dNaAnt single crystals as active layers, high-efficiency single-component OLETs are successfully fabricated, with the demonstration of strong and spatially controlled light emission within both p- and n- conducting channels and output of high external quantum efficiency (EQE). The obtained EQE values in current devices are approaching 1.61% for DPA-OLETs and 1.75% for dNaAnt-based OLETs, respectively, which are the highest EQE values for single-component OLETs in the common device configuration reported so far. Moreover, high brightnesses of 1210 and 3180 cd m(-2) with current densities up to 1.3 and 8.4 kA cm(-2) are also achieved for DPA- and dNaAnt-based OLETs, respectively. These results demonstrate the great potential applications of high mobility emissive organic semiconductors for next-generation rapid development of high-performance single-component OLETs and their related organic integrated electro-optical devices.

Full Text: https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201903175



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明