A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

A Face Alignment Accelerator Based on Optimized Coarse-to-Fine Shape Searching

2019-08-23

Authors: Liu, LB; Wang, Q; Zhu, WP; Mo, HY; Wang, TC; Yin, SY; Shi, YY; Wei, SJ

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

Volume: 29 Issue: 8 Pages: 2467-2481 Published: AUG 2019 Language: English Document type: Article

DOI: 10.1109/TCSVT.2018.2867499

Abstract:

The coarse-to-fine shape searching (CFSS) framework is a recently developed algorithm that achieves relatively high accuracy in face alignment by alleviating the poor initialization problem facing traditional cascaded regression approaches. However, its high computational complexity and memory access demands make it difficult for CFSS to satisfy the requirements of real-time processing. To address this issue, a fast shape searching face alignment (F-SSFA) accelerator is presented based on the optimization of the CFSS algorithm and an efficient hardware implementation. First, the learning-based low-dimensional speeded-up robust features method, based on the correlations between the SURF features and the regression targets, is introduced to distill the feature set down to the only most distinct features to reduce the computing load. Second, the partial keypoints Euclidean distance and shape affine transformation are introduced to replace feature extraction and support vector machine classification, thereby accelerating the shape searching process. Compared with CFSS, F-SSFA achieves a 5.8x speedup while achieving similar accuracy. Moreover, a VLSI architecture is proposed to realize the fixed-point F-SSFA algorithm. Multiple descriptors located in adjacent regions are simultaneously generated in a single access to the corresponding image data. Therefore, repeated memory access operations are avoided. The optimal parameter configuration for hardware implementation is also exploited based on a tradeoff between accuracy and hardware performance. Simulated with TSMC 65-nm 1P8M technology within a 3.6 mm(2) area, a post-layout simulation shows that 700 fps can be achieved while consuming 300 mW at 200 MHz.

Full Text: https://ieeexplore.ieee.org/document/8449335



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明