A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Ab Initio Investigation of Charge Trapping Across the Crystalline-Si-Amorphous-SiO2 Interface

2019-05-05

Authors: Liu, YY; Zheng, F; Jiang, XW; Luo, JW; Li, SS; Wang, LW
PHYSICAL REVIEW APPLIED
Volume: 11 Issue: 4 Published: APR 18 2019 Language: English Document type: Article
DOI: 10.1103/PhysRevApplied.11.044058
Abstract:
Accurate microscopic description of the charge-trapping process from semiconductor to defects in the dielectric-oxide layer is of paramount importance for understanding many microelectronic devices such as complementary metal-oxide-semiconductor (CMOS) transistors, as well as electrochemical reactions. Unfortunately, most current microscopic descriptions of such processes are based on empirical models with parameters fitted to experimental device performance results or simplified approximations like the Wentzel-Kramers-Brillouin (WKB) method. Some critical questions are still unanswered, including: What controls the charge-hopping rate, the coupling strength between the defect level to semiconductor level, or the energy difference? How does the hopping rate decay with defect-semiconductor distance? What is the fluctuation of the defect level, especially in amorphous dielectrics? Many of these questions can be answered by ab initio calculations. However, to date, there are few ab initio studies for this problem mainly due to technical challenges from atomic-structure construction to large-system calculations. Here, using the latest advances in calculation methods and codes, we study the carrier-trapping problem using density-functional theory (DFT) based on the Heyd-Scuseria-Ernzerhof (HSE) exchange correlation functional. The valence bond random-switching method is used to construct the crystalline-Si-amorphous-SiO2 (c-Si/-SiO2) interfacial atomic structure, and the HSE yields a band offset that agrees well with experiments. The hopping rate is calculated with the Marcus theory, and the hopping-rate dependences on the gate potential and defect distances are revealed, as well as the range of fluctuation results from amorphous structural variation. We also analyze the result with the simple WKB model and find a major difference in the description of the coupling constant decay with the defect-semiconductor distance. Our results provide the ab initio simulation insights for this important carrier-trapping process for device operation.
全文链接:https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.11.044058



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明