A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Few-shot machine learning in the three-dimensional Ising model

2019-04-04

 
Authors: Zhang, R; Wei, B; Zhang, D; Zhu, JJ; Chang, K
PHYSICAL REVIEW B
Volume: 99 Issue: 9 Published: MAR 19 2019 Language: English Document type: Article
DOI: 10.1103/PhysRevB.99.094427
Abstract:
We investigate theoretically the phase transition in a three-dimensional cubic Ising model utilizing state-of-the-art machine learning algorithms. Supervised machine learning models show high accuracies (99%) in phase classification and very small relative errors (<10(-4)) of the energies in different spin configurations. Unsupervised machine learning models are introduced to study the spin configuration reconstructions and reductions, and the phases of reconstructed spin configurations can be accurately classified by a linear logistic algorithm. Based on the comparison between various machine learning models, we develop a few-shot strategy to predict phase transitions in larger lattices from a trained sample in smaller lattices. The few-shot machine learning strategy for a three-dimensional (3D) Ising model enables us to study the 3D Ising model efficiently and provides an integrated and highly accurate approach to other spin models.
全文链接:https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.094427



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明