科学家发现:拉伸纳米管可控制其电导率,未来可应用于高精度传感器
具有环面拓扑结构的光学晶格
中国科学家在国际上首次实现器件无关的量子随机数
科学新发现:光物质相互作用可改善电子和光电器件
前沿 | 基于变换光学原理的新型集成光子器件
洞见 | 量子计算机控制系统问世 “量子霸权”仍任重道远
突破 | 化学所在钙钛矿太阳能电池材料与器件方面取得系列进展
光电所在弱小目标跟踪测量研究中取得进展
中山大学实现少层二维材料发光的电调控
XenomatiX展示全固态激光雷达解决方案
官方微信
友情链接

突破!物理学家发现控制“纳米级磁铁”的新技术!

2018-12-27

来自加州大学欧文分校的物理学家发现了一种利用电流控制纳米级磁铁的新方法。

这一突破在《自然纳米技术》(《由平面霍尔电流驱动的自旋轨道扭矩》)上发表的一篇论文中进行了详细阐述,它可能为下一代节能电脑和数据中心铺平道路。

UCI物理学和天文学教授Ilya Krivorotov说:“人们对使用磁性纳米颗粒进行新型信息处理(如神经形态计算)越来越感兴趣。”“通过我们的工作,我们发现了一种有效的纳米agnets操作方法,这是朝着这个目标迈出的一大步。”

扫描电子显微镜图像显示了一种磁纳米线装置,用于测量电流感应扭矩。(图片:Krivorotov Group / UCI)

这项新技术与开尔文勋爵(威廉·汤姆森饰)1856年的工作有着惊人的联系。开尔文勋爵发现,镍中磁力方向的改变会影响这种铁磁性金属的电流流动。

Krivorotov和他的同事,UCI博士后学者Eric Montoya和研究生Christopher Safranski认为反向也是正确的:电流可以施加扭矩并改变金属的磁性。

随着磁体尺寸的减小,转矩的效率会增加,从而提高了纳米级技术应用的可行性。扭矩起源于相对论和量子力学,因为它起源于金属中电子以光速的一小部分快速运动。

Krivorotov说:“我希望这种效应能在日常电子产品中得到应用,比如手机。”“基础物理和实际应用之间的这种联系令人鼓舞。”

 

------------------------------------------ 英文版(原文)------------------------------------------
Scientists discover technique for manipulating magnets at nanoscale
2018-10-30 来源:nanowerk

(Nanowerk News) Physicists from the University of California, Irvine have discovered a new way to control magnets at the nanometer scale by electric current.
This breakthrough, detailed in a paper published in Nature Nanotechnology ("Spin–orbit torque driven by a planar Hall current"), may pave the way for the next generation of energy-efficient computers and data centers.
“There is growing interest in using magnetic nanoparticles for new types of information processing, such as neuromorphic computing,” said co-author Ilya Krivorotov, UCI professor of physics & astronomy. “The efficient method for manipulation of nanomagnets found through our work is a big step toward this goal.”

The new technique has a surprising connection to the 1856 work of Lord Kelvin (William Thomson), who found that a change in the direction of the magnetic force in nickel influences the flow of electric current in this ferromagnetic metal.
Krivorotov and his fellow authors, UCI postdoctoral scholar Eric Montoya and graduate student Christopher Safranski, determined that the inverse is also true: Electric current can apply torque and redirect the metal’s magnetism.
The efficiency of the torque increases as the size of the magnet is decreased, enhancing the viability of this property for technological applications at the nanoscale. Torque is rooted in both relativity and quantum mechanics, as it arises from the rapid motion of electrons in metals traveling at a fraction of the speed of light.
“I hope that this effect will find use in everyday electronic gadgets, such as mobile phones,” Krivorotov said. “This connection between fundamental physics and practical applications is inspiring.”

(来源:明日情报

 

 



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 ? 中国科学院半导体研究所

备案号:京ICP备05085259号 京公网安备110402500052 中国科学院半导体所声明