中国科学家在国际上首次实现器件无关的量子随机数
科学新发现:光物质相互作用可改善电子和光电器件
前沿 | 基于变换光学原理的新型集成光子器件
洞见 | 量子计算机控制系统问世 “量子霸权”仍任重道远
突破 | 化学所在钙钛矿太阳能电池材料与器件方面取得系列进展
光电所在弱小目标跟踪测量研究中取得进展
中山大学实现少层二维材料发光的电调控
XenomatiX展示全固态激光雷达解决方案
特殊材料取代硅造出半导体薄膜
媲美OLED 效率更高成本更低的钙钛矿LED面世
官方微信
友情链接

科学家发现:拉伸纳米管可控制其电导率,未来可应用于高精度传感器

2018-12-20

(Nanowerk News)来自NUST MISIS无机纳米材料实验室的科学家和他们的国际同事已经证明,通过拉伸碳纳米管,可以改变其结构和导电性能。

这可能将纳米管的应用扩展到电子和高精度传感器,如微处理器和高精度检测器。这篇研究文章发表在《超微显微镜》上(“原位瞬变电磁法探测发现的单个少壁碳纳米管的手性跃迁和输运特性”)。

碳纳米管可以表示为以一种特殊方式卷起来的石墨烯薄片。它有不同的“折叠”方式,导致石墨烯边缘以不同角度相互连接,形成扶手椅、之字形或手性纳米管(图1)。

图1:不同类型的纳米管:1)锯齿状的,2)手性的,3)扶手椅(或齿状的)。(图片:NUST MISIS)

纳米管被认为是一种很有前途的材料,可用于电子和传感器,因为它们具有高导电性,这在微处理器和高精度探测器等领域很适用。

然而,在生产碳纳米管时,很难控制它们的导电性。具有金属和半导体特性的纳米管可以长成一个阵列,而基于微处理器的电子要求具有相同特性的半导体纳米管。

NUST MISIS无机纳米材料实验室的科学家与日本、中国和澳大利亚的一个研究小组共同提出了一种方法,该方法允许修改现成纳米管的结构,从而改变其导电性能。

“纳米管是一个折叠的石墨烯层,它的基础是一个正六边形网格,顶点是碳原子。”如果将纳米管中的一个碳键旋转90度,就会形成一个五边形和一个七边形而不是六边形,在这种情况下就会形成所谓的石威尔士缺陷。在一定条件下,这种缺陷可能发生在结构中。早在90年代末,这是预测,这个缺陷的迁移沿墙的高度激烈的纳米管的应用机械应力可能导致其结构的变化——一个连续的纳米管的手性的变化,从而导致其电子特性的变化。自然与数学科学博士、NUST MISIS无机纳米材料实验室“纳米结构理论材料科学”基础设施项目负责人、副教授Pavel Sorokin说。

来自NUST MISIS无机纳米材料实验室的科学家已经在原子水平上进行了实验模拟。首先,纳米管被加长,形成了第一个由两个五边形和两个七边形组成的结构缺陷(一个Stone-Wales缺陷,图2a),在这个缺陷中,管的加长开始向两侧扩散,重新排列其他碳键(图2b)。正是在这个阶段,纳米管的结构发生了变化。随着进一步拉伸,越来越多的石威尔士缺陷开始形成,最终导致纳米管电导率的变化(图2)。


图2

“我们负责在NUST MISIS实验室的一台超级计算机上对这一过程进行理论建模,并为实验部分的工作开发新材料。我们很高兴模拟结果[支持]实验数据”,研究工作的合著者,物理和数学科学的候选人,NUST MISIS无机纳米材料实验室的研究员Dmitry Kvashnin补充道。

该技术可以帮助金属纳米管的结构转化,进一步应用于半导体电子和传感器,如微处理器和超灵敏探测器。

英文版(原文)
Deformation of nanotubes to control conductivity
2018-10-23 来源:nanowerk

(Nanowerk News) Scientists from the NUST MISIS Laboratory of Inorganic Nanomaterials together with their international colleagues have proved it possible to change the structural and conductive properties of carbon nanotubes by stretching them.
This can potentially expand nanotubes' application into electronics and high-precision sensors such as microprocessors and high-precision detectors. The research article has been published in Ultramicroscopy ("Chirality transitions and transport properties of individual few-walled carbon nanotubes as revealed by in situ TEM probing").
Carbon nanotubes can be represented as a sheet of graphene rolled in a special way. There are different ways of 'folding' it, which leads to the graphene edges interconnecting at different angles, forming either armchair, zigzag or chiral nanotubes (Fig.1).

Nanotubes are considered to be promising materials for use in electronics and sensors because they have high electrical conductivity, which would work well in things like microprocessors and high-precision detectors.
However, when producing carbon nanotubes it is hard to control their conductivity. Nanotubes with metallic and semiconducting properties can grow into a single array while microprocessor-based electronics require semiconducting nanotubes that have the same characteristics.
Scientists from the NUST MISIS Laboratory of Inorganic Nanomaterials jointly with a research team from Japan, China and Australia, led by Professor Dmitri Golberg, have proposed a method that allows for the modification of the structure of ready-made nanotubes and thus changes their conductive properties.
"The basis of the nanotube – a folded layer of graphene – is a grid of regular hexagons, the vertices of which are carbon atoms. If one of the carbon bonds in the nanotube is rotated by 90 degrees, a pentagon and a heptagon are formed at this [junction] instead of a hexagon, and a so-called Stone-Wales defect is obtained in this case. Such a defect can occur in the structure under certain conditions. Back in the late 90s, it was predicted that the migration of this defect along the walls of a highly heated nanotube with the application of mechanical stress could lead to a change in its structure - a sequential change in the chirality of the nanotube, which leads to a change in its electronic properties. No experimental evidence for this hypothesis has previously been obtained, but our research paper has presented convincing proof of it", said Associate Professor Pavel Sorokin, Doctor of Physical & Mathematical Sciences and head of the 'Theoretical Materials Science of Nanostructures' infrastructure project at the NUST MISIS Laboratory of Inorganic Nanomaterials.
Scientists from the NUST MISIS Laboratory of Inorganic Nanomaterials have conducted simulations of the experiment at the atomic level. At first, the nanotubes were lengthened to form the first structural defect consisting of two pentagons and two heptagons (a Stone-Wales defect, Fig.2a), where the prolonged lengthening of the tube began tospread to the sides, rearranging other carbon bonds (Fig.2b). It was at this stage that the structure of the nanotubes changed. With further stretching, more and more Stone-Wales defects began to form, eventually leading to a change in the nanotubes' conductivity (Fig. 2).

"We were responsible for the theoretical modeling of the process on a supercomputer in the NUST MISIS Laboratory for Modeling and Development of New Materials for the experimental part of the work. We are glad that the simulation results [support] the experimental data", added Dmitry Kvashnin, co-author of the research work, Candidate of Physical & Mathematical Sciences and a researcher at the NUST MISIS Laboratory of Inorganic Nanomaterials.
The proposed technology is capable of helping in the transformation of metallic nanotubes' structure for their further application in semiconductor electronics and sensors such as microprocessors and ultrasensitive detectors.

(来源:明日情报

 

 



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 ? 中国科学院半导体研究所

备案号:京ICP备05085259号 京公网安备110402500052 中国科学院半导体所声明